avances tegnologicos
lunes, 17 de agosto de 2015
miércoles, 12 de agosto de 2015
plan de resfuerzo de tecnologia e informatica
PLAN DE REFUERZO DE TECNOLOGÍA E IMFORMATICA
PLAN DE REFUERZO DE TECNOLOGÍA E INFORMÁTICA
PLAN DE REFUERZO DE TECNOLOGÍA E INFORMÁTICA
kelly ahumada
TALLER
CONCEPTO
Representación mental de un objeto, hecho, cualidad, situación,
"es muy difícil definir el concepto de belleza; al no obedecer el término deporte a un concepto unívoco, su polisemia nos obligará a descubrir nuevos significados
DESARROLLE OS SIGUIENTES PUNTOS TENIENDO EN CUENTA LO ANTERIOR
- DEFINA INSTRUMENTO
Objeto fabricado, simple o formado por una combinación de piezas, que sirve para realizar un trabajo o actividad, especialmente el que se usa con las manos para realizar operaciones manuales técnicas o delicadas, o el que sirve para medir, controlar o registrar algo
- TECNOLOGÍA: Conjunto de instrumentos, recursos técnicos o procedimientos empleados en un determinado campo o sector.
- INSTRUMENTO TECNOLÓGICO:
os principales medios para la fabricación de artefactos son la energía y la información. La energía permite dar a los materiales la forma, ubicación y composición que están descritas por la información. Las primeras herramientas, como los martillos de piedra y las agujas de hueso, sólo facilitaban y dirigían la aplicación de la fuerza,
2.
3.HERRAMIENTAS DE TRABAJO
4. Tipos de palancas
El término palanca alude a un tipo de máquina simple cuyo propósito consiste en aplicar fuerza y transmitir velocidad a un objeto. Su composición consta de una barra rígida que fluctúa en torno a un punto de apoyo denominado fulcro.
Se hace uso de la palanca cuando lo que se requiere es aumentar la fuerza aplicada a un cuerpo, o bien, para aumentar la celeridad en su desplazamiento.
Con la palabra potencia se designa a la fuerza menor, y resistencia indica la fuerza mayor.
PALANCA DE PRIMER GRADO: aquí, el punto de apoyo se sitúa entre la potencia y la resistencia. En esta clase de palanca la primera suele ser menor que la segunda, pero sólo cuando aminora la velocidad transferida al objeto y el trayecto recorrido por la resistencia. Podemos señalar como ejemplos a una tijera, una catapulta, una barrera y/o una tenaza.
PALANCA DE SEGUNDO GRADO: es el nombre con que se conoce la clase de palanca en la que la resistencia se ubica entre el punto de apoyo y la potencia. Esta última, siempre es menor que la resistencia, pero sólo cuando reduce la velocidad, y el trayecto recorrido por la resistencia cobra fuerza. Ejemplos de este tipo de palanca son: el rompenueces, la carretilla, los remos y el abrelatas.
PALANCA DE TERCER GRADO: la tercer clase de palanca se distingue por el hecho de que la potencia está localizada entre la resistencia y el punto de apoyo. Aquí, la parte de la potencia siempre será menor que la sección de la resistencia. En consecuencia, esta última es menor que la potencia. Es utilizada cuando el objetivo es aumentar la celeridad transferida a un elemento o bien, la distancia recorrida por el mismo. El elemento para quitar los ganchos colocados con la abrochadora, es un típico ejemplo de palanca de tercer grado.
TIPOS DE PALANCAS:
La ubicación del fulcro respecto a la carga y a la potencia o esfuerzo, definen el tipo de palanca:
-Palanca de primer tipo o primera clase: Se caracteriza por tener el fulcro entre la fuerza a vencer y la fuerza a aplicar. Esta palanca amplifica la fuerza que se aplica; es decir, consigue fuerzas más grandes a partir de otras más pequeñas. Algunos ejemplos de este tipo de palanca son: el alicates, la balanza, la tijera, las tenazas y el balancín. Algo que desde ya debe destacarse es que al accionar una palanca se producirá un movimiento rotatorio respecto al fulcro, que en ese caso sería el eje de rotación.
-Palanca de primer tipo o primera clase: Se caracteriza por tener el fulcro entre la fuerza a vencer y la fuerza a aplicar. Esta palanca amplifica la fuerza que se aplica; es decir, consigue fuerzas más grandes a partir de otras más pequeñas. Algunos ejemplos de este tipo de palanca son: el alicates, la balanza, la tijera, las tenazas y el balancín. Algo que desde ya debe destacarse es que al accionar una palanca se producirá un movimiento rotatorio respecto al fulcro, que en ese caso sería el eje de rotación.

-Palanca de segundo tipo o segunda clase: Se caracteriza porque la fuerza a vencer se encuentra entre el fulcro y la fuerza a aplicar. Este tipo de palanca también es bastante común, se tiene en lo siguientes casos: carretilla, destapador de botellas, rompenueces. También se observa, como en el caso anterior, que el uso de esta palanca involucra un movimiento rotatorio respecto al fulcro que nuevamente pasa a llamarse eje de rotación.

-Palanca de tercer tipo o tercera clase: Se caracteriza por ejercerse la fuerza “a aplicar” entre el fulcro y la fuerza a vencer. Este tipo de palanca parece difícil de encontrar como ejemplo concreto, sin embargo el brazo humano es un buen ejemplo de este caso, y cualquier articulación es de este tipo, también otro ejemplo lo tenemos al levantar una cuchara con sopa o el tenedor con los tallarines, una corchetera funciona también aplicando una palanca de este tipo. Este tipo de palanca es ideal para situaciones de precisión, donde la fuerza aplicada suele ser mayor que la fuerza a vencer. Y, nuevamente, su uso involucra un movimiento rotatorio.

-Palancas múltiples: Varias palancas combinadas.Por ejemplo: el cortaúñas es una combinación de dos palancas, el mango es una combinación de 2º género que presiona las hojas de corte hasta unirlas. Las hojas de corte no son otra cosa que las bocas o extremos de una pinza y, constituyen, por tanto, una palanca de tercer género. Otro tipo de palancas múltiples se tiene en el caso de una máquina retroexcavadora, que tiene movimientos giratorios (un tipo de palanca), de ascenso y descenso (otra palanca) y de avanzar o retroceder (otra palanca).



6. maquinas simples y compuestas

Maquinas compuestas![]()
La manera más apropiada de comenzar este artículo será sin duda, en la medida que existe mucha gente que lo ignora, tratar de explicar sencilla y apropiadamente qué es, en realidad, una maquina compuesta. Pues bien: Dicha expresión ha de aplicarse a todo sistema de mecanismos en el que las distintas variables son, siempre, maquinas simples. Profundicemos un poco esta muy técnica definición.
Para poder entender lo que es una maquina compuesta debemos primero, antes que nada, saber a la perfección de qué hablamos cuando nos referimos a maquinas simples. Solo una vez que hayamos sido capaces de comprender cabalmente el funcionamiento de aquellas, seremos libres, entonces, de dar el siguiente paso; tratar de hacernos una idea bien clara de qué es lo que la palabra “sistema” en realidad, al fin y al cabo, quiere decir.
La palabra sistema está, hoy en día, en la boca de todo el mundo. Sin embargo, si uno se anima a preguntar por ahí, suele descubrir que son muy pocas las personas que efectivamente saber definir la palabra sistema. No todo lo que la gente suele llamar sistema es, en realidad, tal cosa. Despejemos entonces las dudas; es cosa bastante sencilla: Un sistema no es más que una interrelación de variables. O sea: consideramos variable a cualquier cosa que se pueda experimentar y medir y, luego, consideramos sistema a una interacción dada de variables.
La característica fundacional de todo sistema ha de ser, entonces, el hecho de que la alteración de alguna de sus variables implicará, entonces, sí o sí, la aliteración de, por lo menos, otra.
Vemos un ejemplo sencillo; un juego de ajedrez (es indistinto si el lector sabe o no jugar)Cuando se mueve una pieza, sea la que sea, ese movimiento produce una transformación en el sistema todo; todas las demás piezas pasan, inmediatamente, a verse alcanzadas por el cambio que implica la pieza movida. Así, el ajedrez es, de todos los divertimentos, el más sistémico de todos.
Ahora bien: Fusionando las dos partes hasta aquí explicitadas (el funcionamiento de las maquinas simples y el funcionamiento de un sistema)
![]()
es como sale definitivamente a la luz el significado de la expresión maquina compuesta. Se trata de un sistema en el que cada una de las maquinas simples es, ni más ni menos, que un mecanismo, o sea, una variable. Analicemos, ahora que ya tenemos las cosas más claras, como funciona esta interrelación de variables mecánicas.
Ya lo dijimos; una maquina compuesta está constituida por varias (como mínimo dos) máquinas simples. Cada una de esas maquinas simples es un mecanismo del sistema; al recibir una determinada energía, la maquina simple produce transformaciones en la misma y luego, en ves de liberarla como resultado, la “pasa” a otra maquina simple que, a su vez, produce todavía más modificaciones. Construir una maquina compuesta significa poner en interrelación una determinada cantidad de maquinas simples.
Todo lo demás es cosa bastante obvia; si en una maquina compuesta falla alguna de las maquinas simples esto significará, consecuentemente, el fallo absoluto del sistema todo. La reparación de maquinas compuestas implica, entonces, saber encontrar cuál es, de todas, la maquina simple que está produciendo el problema. Cuando se soluciona el conflicto con el mecanismo particular, este vuelve a trabajar armoniosamente con los demás y así, todos juntos, reestablecen la capacidad operativa del sistema (de la maquina compuesta). Cuantas más maquinas simples contenga el sistema, más compuesta será la maquina que dicho sistema implique.
Prácticamente todos los artefactos a que apelamos diariamente son, en realidad, forma más o menos complejas de maquinas compuestas. La video casetera y la motocicleta, las impresoras y las maquinas de secar la ropa. El mundo no sería lo que es sin el inapreciable trabajo de las maquinas compuestas. ![]()
lo que caracteriza a una maquina, por sobre cualquier otro sistema natural, es que la misma es, siempre, diseñada y construida por el intelecto del hombre para la funcionalidad y comodidad del propio hombre. Se trata, simple y complejamente, de poner en interrelación funcional las distintas fuerzas de la naturaleza con las leyes físicas y químicas que las rigen. Todos los pasos que da la tecnología son, en realidad, esto es lo que los hace verdaderamente geniales, un aumento en los poderes que el ser humano es capaz de esgrimir sobre su entrono. Aprender a individualizar las energías y, luego capacitarse para ponerlas en interrelación funcional; he ahí, muy esencialmente simplificado, el tema todo que desde las épocas más pretéritas ha significado la ciencia en tanto construcción de maquinarias.
La maquina compuesta es, así, la sucesora necesaria de la maquina simple. Porque en el terreno de las maquinas las cosas no funcionan como saben hacerlo en el seres vivos; en el mundo material el todo no es otra cosa más que la correcta suma de las partes
PARA EL LIC: WILLLIAN MEDINA A. |
Suscribirse a:
Entradas (Atom)